A Molecular Dynamics Simulation Study of the Mechanical Properties of Carbon-Nanotube Reinforced Polystyrene Composite
نویسندگان
چکیده
In recent years, polymer/carbon nanotube composites have attracted increased attention because the polymer properties have significantly improved. In this paper, a single walled carbon nanotube (SWCNT) is used to reinforce polystyrene matrix. Molecular dynamics (MD) simulations are used to study two periodic systems a long CNT-reinforced polystyrene composite and amorphous polystyrene matrix itself. The axial and transverse elastic moduli of the amorphous polystyrene matrix and nanocomposites are evaluated using constant-strain energy minimization method. The results from MD simulations are compared with corresponding rule-of-mixture predictions. The simulation results show that CNTs significantly improve the stiffness of polystyrene/CNT composite, especially in the longitudinal direction of the nanotube. Polystyrene posses a strong attractive interaction with the surface of the SWCNT and therefore play an important role in providing effective adhesion. The conventional rule-of-mixture predicts a smaller value than MD simulation where there are strong interfacial interactions. Here the authors report a study on the interfacial characteristics of a CNT-PS composite system through MD simulations and continuum mechanics. Nabila Tahreen Bangladesh University of Engineering and Technology, Bangladesh K. M. Masud Bangladesh University of Engineering and Technology, Bangladesh 466 Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. DOI: 10.4018/978-1-4666-5125-8.ch019
منابع مشابه
Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study
Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...
متن کاملComputational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites
Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...
متن کاملMolecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کاملBuckling Analysis of Spherical Composite Panels Reinforced by Carbon Nanotube
In this study, the buckling behavior of moderately thick Carbon Nano-Tube (CNT)-reinforced spherical composite panels subjected to both uniaxial and biaxial loads is examined. The uniform and various kinds of functionally graded distributions of the CNT are considered. The mechanical properties of the nanocomposite panels are estimated using the modified rule of mixture. Based on the first-orde...
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJMMME
دوره 3 شماره
صفحات -
تاریخ انتشار 2013